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ABSTRACT
Tableau is a commercial business intelligence (BI) software
tool that supports interactive, visual analysis of data. Armed
with a visual interface to data and a focus on usability,
Tableau enables a wide audience of end-users to gain insight
into their datasets. The user experience is a fluid process of
interaction in which exploring and visualizing data takes just
a few simple drag-and-drop operations (no programming or
DB experience necessary). In this context of exploratory,
ad-hoc visual analysis, we describe a novel approach to inte-
grating large, heterogeneous data sources. We present a new
feature in Tableau called data blending, which gives users
the ability to create data visualization mashups from struc-
tured, heterogeneous data sources dynamically without any
upfront integration effort. Users can author visualizations
that automatically integrate data from a variety of sources,
including data warehouses, data marts, text files, spread-
sheets, and data cubes. Because our data blending system
is workload driven, we are able to bypass many of the pain-
points and uncertainty in creating mediated schemas and
schema-mappings in current pay-as-you-go integration sys-
tems.

Categories and Subject Descriptors: H.5.0 [Informa-
tion Systems]: Information Interfaces and Presentation

General Terms: Design, Human Factors, Management

Keywords: Data Integration, Visualization

1. INTRODUCTION
Unlike databases, human brains have limited capacity for

managing and making sense of large collections of data. In
database terms, the feat of gaining insight in big data is of-
ten accomplished by issuing aggregation and filter queries.
Yet, this approach is time-consuming as the user is forced to
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Figure 1: Cycle of Visual Analysis

1) figure out what queries to write, 2) write the queries, 3)
wait for the results to be returned back in textual format,
and finally 4) read through these textual summaries (often
containing thousands of rows) to search for interesting pat-
terns or anomalies. Tools like Tableau help bridge this gap
by providing a visual interface to the data. This approach
removes the burden of writing queries and has the user ask
their questions through visual drag-and-drop operations (no
queries or programming experience required). Additionally,
answers are displayed visually, where patterns and outliers
can quickly be identified.

Visualizations leverage the powerful human visual system
to effectively digest large amounts of information. Figure 1
illustrates how visualization is a key component in the sense-
making model [1], i.e. the theory of how people search for,
organize, and generate new knowledge from data. The pro-
cess starts with some task or question that a knowledge
worker (shown at the center) seeks to gain understanding.
In the first stage, the user forages for data that may con-
tain relevant information for their analysis task. Next, they
search for a visual structure that is appropriate for the data
and instantiate that structure. At this point, the user in-
teracts with the resulting visualization (e.g. drill down to
details or roll up to summarize) to develop further insight.
Once the necessary insight is obtained, the user can then
make an informed decision and take action. This cycle is



centered around and driven by the user and requires that
the visualization system be flexible enough to support user
feedback and allow alternative paths based on the needs of
the user’s exploratory tasks. Most visualization tools [4, 5,
13], however, treat this cycle as a single, directed pipeline,
and offer limited interaction with the user.

Moreover, users often want to ask their analytical ques-
tions over multiple data sources. However, the task of set-
ting up data for integration is orthogonal to the analysis task
at hand, requiring a context switch that interrupts the nat-
ural flow of the analysis cycle. We extend the visual analysis
cycle with a new feature called data blending that allows the
user to seamlessly combine and visualize data from multiple
different data sources on-the-fly. Our blending system issues
live queries to each data source to extract the minimum in-
formation necessary to accomplish the visual analysis task.
Often, the visual level of detail is at a coarser level than the
data sets. Aggregation queries, therefore, are issued to each
data source before the results are copied over and joined in
Tableau’s local in-memory view. We refer to this type of
join as a post-aggregate join and find it a natural fit for ex-
ploratory analysis, as less data is moved from the sources
for each analytical task, resulting in a more responsive sys-
tem. Finally, Tableau’s data blending feature automatically
infers how to integrate the datasets on-the-fly, involving the
user only in resolving conflicts. This system also addresses
a few other key data integration challenges, including com-
bining datasets with mismatched domains or different levels
of detail and dirty or missing data values. One interesting
property of blending data in the context of a visualization
is that the user can immediately observe any anomalies or
problems through the resulting visualization.

These aforementioned design decisions were grounded in
the needs of Tableau’s typical BI user base. Thanks to the
availability of a wide-variety of rich public datasets from
sites like data.gov, many of Tableau’s users integrate data
from external sources such as the Web or corporate data
such as internally-curated Excel spreadsheets into their en-
terprise data warehouses to do predictive, what-if analysis.
However, the task of integrating external data sources into
their enterprise systems is complicated. First, such reposi-
tories are under strict management by IT departments, and
often IT does not have the bandwidth to incorporate and
maintain each additional data source. Second, users often
have restricted permissions and cannot add external data
sources themselves. Such users cannot integrate their exter-
nal and enterprise sources without having them collocated.
An alternative approach is to move the data sets to a data
repository that the user has access to, but moving large data
is expensive and often untenable. We therefore architected
data blending with the following principles in mind: 1) move
as little data as possible, 2) push the computations to the
data, and 3) automate the integration challenges as much as
possible, involving the user only in resolving conflicts.

The rest of this paper is organized as follows. First in
Section 2 we present a brief overview of Tableau and data
blending. Then in Section 3 we discuss the use-case scenar-
ios and underlying principles that drove the design of our
data blending architecture. Section 4 describes our overall
approach to data blending. Section 5 covers related work.
Finally, in Section 6, we discuss interesting research direc-
tions, and in Section 7 we conclude.
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Figure 2: Small Sample Tables of Infant Mortality
Rates, GDP, and Population in 2000

2. BACKGROUND
In this section we describe Tableau and data blending at a

high-level. To make the concepts more concrete, we discuss
a simple example that blends data from three data sources
to produce a compelling visualization.

2.1 Tableau Overview
Tableau [11] is a data visualization tool that sits between

the end-user and the database and allows the user to create
visualizations by dragging and dropping fields from their
datasets onto a visual canvas. In response to these ac-
tions, Tableau generates formal VizQL (Visual Query Lan-
guage) [10] statements to build the requested visualization.
VizQL is a structured query language with support for ren-
dering graphics. Each VizQL statement is compiled into the
SQL or MDX queries necessary to generate the data for the
visualization.

2.2 Blending Data Overview
The data blending feature, released in Tableau 6.0, allows

an end-user to dynamically combine and visualize data from
multiple heterogeneous sources without any upfront integra-
tion effort. A user authors a visualization starting with a
single data source – known as the primary – which estab-
lishes the context for subsequent blending operations in that
visualization. Data blending begins when the user drags in
fields from a different data source, known as a secondary
data source. Blending happens automatically, and only re-
quires user intervention to resolve conflicts. Thus the user
can continue modifying the visualization, including bring-
ing in additional secondary data sources, drilling down to
finer-grained details, etc., without disrupting their analyt-
ical flow. The novelty of this approach is that the entire
architecture supporting the task of integration is created at
runtime and adapts to the evolving queries in typical ana-
lytical workflows.

2.3 Simple Illustrative Example
In this section we discuss a scenario in which three unique

data sources (see left half of Figure 2 for sample tables)
are blended together to create the visualization shown in
Figure 31. This is a simple, yet compelling mashup of three

1
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Figure 3: Blended View of Infant Mortality Rates,
GDP, and Population in 2000

unique measures that tells an interesting story about the
complexities of global infant mortality rates in the year 2000.

In this example, the Tableau user wants to understand if
there is a connection between infant mortality rates, GDP,
and population. She has three distinct spreadsheets with
the following characteristics: the first data source contains
information about the infant mortality rates per 1000 live
births for each country, the second contains information
about each country’s total population, and the third source
contains country-level GDP. For this analysis task, the
user drags the fields, "Country or Area" and "Infant mor-
tality rate per 1000 live births", from her first data
source onto the blank visual canvas. Since these fields were
the first ones selected by the user, then the data source as-
sociated with these fields becomes the primary data source.
This action produces a visualization showing the relative in-
fant mortality rates for each country. But the user wants
to understand if there is a correlation between GDP and in-
fant mortality, so she then drags the "GDP per capita in
US dollars" field onto the current visual canvas from Data
Table A. The step to join the GDP measure from this sep-
arate data source happens automatically: the blending sys-
tem detects the common join key (ı.e. "Country or Area")
and combines the GDP data with the infant mortality data
for each country. Finally, to complete her analysis task, she
adds the "Population" measure from Data Table B, to the
visual canvas, which produces the visualization in Figure 3
associated with the blended data table in Figure 2.

3. USAGE SCENARIOS AND DESIGN
PRINCIPLES

In this section, we discuss when it is advantageous to lever-
age the data blending feature for integrating datasets. Ad-
ditionally, we discuss some common use-case scenarios that
blending makes more accessible to the end-user.

3.1 Why blend data?
Tableau is equipped with two ways of integrating data.

First, in the case where the data sets are collocated (or
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Figure 4: Company A and B Data Tables (left) and
Blended Result (right)

can be collocated), Tableau formulates a query that joins
them to produce a visualization. However, in the case where
the data sets are not collocated (or cannot be collocated),
Tableau federates queries to each data source, and creates a
dynamic, blended view that consists of the joined result sets
of the queries. For the purpose of exploratory visual analyt-
ics, we find that data blending is a complementary technol-
ogy to the standard collocated approach with the following
benefits:

• Resolves many data granularity problems

• Resolves collocation problems

• Adapts to needs of exploratory visual analytics

Resolves data granularity problems
Oftentimes a user wants to combine data that may not be
at the same granularity (i.e. they have different primary
keys). For example let’s say that an employee at company A
wants to compare the yearly growth of sales to a competitor
company B. The dataset for company B (see Figure 4)
contains a detailed quarterly growth of sales for B (quarter,
year is the primary key), while company A’s dataset only
includes the yearly sales (year is the primary key). If the
employee simply joins these two datasets on yearly earnings,
then each row from A will be duplicated for each quarter in
B for a given year resulting in an inaccurate overestimate
of A’s yearly earnings. This duplication problem can be
avoided if for example, company B’s sales dataset were first
aggregated to the level of year, then joined with company
A’s dataset. In this case, data blending detects that the
data sets are at different granularities by examining their
primary keys and notes that in order to join them, the
common field is year. In order to join them on year, an
aggregation query is issued to company B’s dataset, which
returns the sales aggregated up to the yearly level as shown
in Figure 4.This result is blended with company A’s dataset
to produce the desired visualization of yearly sales for
companies A and B. The blending feature does all of this
on-the-fly without user-intervention.

Resolves collocation problems
As mentioned in Section 1, many of Tableau’s BI users
are faced with challenges in integrating their external data
sources into their IT-managed data repositories. Some of
them simply cannot collocate their datasets for integration
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Figure 5: Gapminder tribute demonstrating on-the-
fly creation of blended views

either because they lack the appropriate permissions or be-
cause moving their large data to their own locally-managed
repository is expensive and untenable. In other cases, the
data repository may have rigid structure, as with cubes,
to ensure performance, support security or protect data
quality. Furthermore, it is often unclear if it is worth the
effort of integrating an external data set that has uncertain
value. The user may not know until she has started
exploring the data if it has enough value to justify spending
the time to integrate and load it into her repository. Thus,
one of the paramount benefits of data blending is that it
allows the user to quickly start exploring their data, and
as they explore the integration happens automatically as
a natural part of the analysis cycle. An interesting final
benefit of the blending approach is that it enables users to
seamlessly integrate across different types of data (which
usually exist in separate repositories) such as relational,
cubes, text files, spreadsheets, etc.

Adapts to needs of exploratory visual analytics
A key benefit of data blending is its flexibility; it gives the
user the freedom to view their blended data at different gran-
ularities and control how data is integrated on-the-fly. The
blended views are dynamically created as the user is visu-
ally exploring the datasets. For example, the user can drill-
down, roll-up, pivot, or filter any blended view as needed
during her exploratory analysis. This feature is useful for
data exploration and what-if analysis.

3.2 Real User Application Scenarios
In this section we present a couple application scenarios

that highlight interesting uses of data blending by Tableau’s
customers. These examples (along with the illustrative ex-
ample in Section 2.3) were taken from Tableau Public [12],
which is an online repository of published visualizations.

Wealth and health of nations: a Gapminder tribute2

A Tableau user created an interactive visualization inspired
by Gapminder [8] (see Figure 5), which allows users to

2
http://public.tableausoftware.com/views/Gapminder/Gapminder
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Figure 6: San Francisco Election Outcome Modeling

select and plot various demographic data in a scatterplot,
with each data point representing a country. This is a nice
example that demonstrates the flexibility of data blending.
A user can select from three different data sources to blend
on the x-axis (including life expectancy, CO2 emissions,
and population) and three sources for the y-axis (including
number of children per woman, energy use, and income
per person). This demonstrates the flexibility of the data
blending feature, namely that users can dynamically change
their blended views by pivoting on different data sources
and measures to blend in their visualizations.

Modeling Election Outcomes3

Figure 6 illustrates the possible outcomes of an election for
District 2 Supervisor of San Francisco. With this type of vi-
sualization, the user can select different election styles and
see how their choice affects the outcome of the election.
What’s interesting from a blending standpoint is that this is
an example of a many-to-one relationship between the pri-
mary and secondary datasets. This means that the fields
being left-joined in by the secondary data sources match
multiple rows from the primary dataset and results in these
values being duplicated. Thus any subsequent aggregation
operations would reflect this duplicate data, resulting in
overestimates. The blending feature, however, prevents this
scenario from occurring by performing all aggregation prior
to duplicating data during the left-join.

3.3 Guiding Design Principles
We describe the primary design principles upon which

Tableau’s data blending feature was based. These princi-
ples were influenced by the application needs of Tableau’s
end-user. In particular, we designed the blending system
to be able to integrate datasets on-the-fly, be responsive to
change, and driven by the visualization. Additionally, we
assumed that the user may not know exactly what she is
looking for initially, and needs a flexible, interactive system
that can handle exploratory visual analysis.

Push Computation to Data and Minimize Data Movement

Tableau’s approach to data visualization allows users
to leverage the power of a fast database system. Tableau

3
http://public.tableausoftware.com/views/SFElections3 1/SD2Map



compiles the VizQL [10] declarative formalism representing
a visual specification into SQL or MDX and pushes this
computation close to the data, where the fast database
system handles computationally intensive aggregation and
filtering operations. In response, the database provides a
relatively small result set for Tableau to render. This is
an important factor in Tableau’s choice of post-aggregate
data integration across disparate data sources – since
the integrated result sets must represent a cognitively
manageable amount of information, the data integration
process operates on small amounts of aggregated, fil-
tered data from each data source. This approach avoids
the costly migration effort to collocate massive data
sets in a single warehouse, and continues to leverage fast
databases for performing expensive queries close to the data.

Automate as Much as Possible, but Keep User in Loop

Tableau’s primary focus has been on ease of use since
most of Tableau’s end-users are not database experts, but
range from a variety of domains and disciplines: business
analysts, journalists, scientists, students, etc. We therefore,
took a simple, pay-as-you-go [3] integration approach in
which the user invests minimal upfront effort or time
to receive the benefits of the system. For example, the
data blending system does not require the user to specify
schemas for their data sets, rather the system tries to infer
this information as well as how to apply schema matching
techniques to blend them for a given visualization. Further-
more the system provides a simple drag-and-drop interface
for the user to specify the fields for a visualization, and if
there are fields from multiple data sources in play at the
same time, the blending system infers how to join them to
satisfy the needs of the visualization.

In the case that something goes wrong, for example, if
the schema matching could not succeed, the blending sys-
tem provides a simple interface for specifying data source
relationships and how blending should proceed. Addition-
ally, the system provides several techniques for managing
the impact of dirty data on blending, which we discuss in
Section 4.8

4. INTEGRATING DATA IN TABLEAU
In this section we discuss in greater detail how data blend-

ing works. Then we discuss how a user builds visualizations
using data blending using several large datasets involving
airline statistics.

4.1 Data Blending Architecture
The data blending system, shown in Figure 7 takes as in-

put the VizQL query workload generated by the user’s GUI
actions and data source schemas, and automatically infers
how to query the data sources remotely and combine their
results on-the-fly. The system features a two-tier mediator-
based architecture in which the VizQL query workload is an-
alyzed and partitioned at runtime based on the correspond-
ing data source fields being used. The primary mediator ini-
tiates this process by removing the visual encodings from the
VizQL query workload to yield an abstract query. The ab-
stract query is partitioned for further processing by the pri-
mary mediator and one or more secondary mediators. The
primary mediator creates the mediated schema for the given
query workload. It then federates the abstract queries to the
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Figure 7: Tableau’s Data Blending Architecture

primary data source as well as the secondary mediators and
their respective data sources. The wrappers compile the
abstract queries into concrete SQL or MDX queries and in-
stantiate the semantic mappings between the data sources
and the mediated schema for each query. The primary me-
diator joins all the result sets returned from all data sources
to produce the mediated result set used by the rendering
system.
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Figure 8: Components of the Mediated Schema

4.2 Post-aggregate Join
A visualization is organized by its discrete fields into

pages, partitions, colors, etc., and like a GROUP BY clause
in SQL, these grouping fields comprise the primary key of
the visualization. In a blended visualization, the grouping
fields from the primary data source become the primary key
of the mediated schema. In Figure 8 these are shown as the
dark-green fields in the primary data source, and the light-
green fields represent the aggregated data. Each secondary
data source must contain at least one field that matches a
visualization grouping field in order to blend into the me-
diated schema. The matching fields in a secondary data
source comprise its join key, and fields appear in the GROUP
BY clause issued by the secondary mediator wrappers. The
aggregated data from the secondary data source, shown in
light-purple, is then left-joined along its join key into the
mediated result set. We refer to this left-join of aggregated
result sets as a post-aggregate join.



(a) (b)

Figure 9: Screenshots of Blended Airline Data from Bureau of Transportation Statistics:
(a) Airfare Price (324M rows) and Fuel Costs (8K rows) by year
(b) Both datasets from (a), On-Time Performance (140M rows), and Carrier Names (1.5K rows).

4.3 Primary Key Cardinality
As a user blends additional data into her visualization,

she is guaranteed that the blended data will not affect the
cardinality of the result set. The left-join ensures that no
rows from the primary data source result set are lost due
to missing data from a secondary data source. Additionally
there cannot be a one-to-many mapping between the domain
values of the primary key and those of the secondary join key,
because the secondary join key is a subset of the primary key
and contains only unique values in the aggregated secondary
result set. We find that this approach is the most natural
for augmenting a visualization with secondary data sources
of uncertain value or quality, which is a common scenario
for Tableau users.

Data blending supports many-to-one relationships be-
tween the primary and each secondary. This can occur when
the secondary data source contains coarser-grained data
than the mediated result set, as discussed in Section 3.1.
Since the join key in a secondary result set may match a
subset of the blended result set primary key, portions of the
secondary result set may be duplicated across repeated val-
ues in the mediated result set. This does not pose risk of
double-counting measure values, becaused all aggregation is
performed prior to the join. When a blended visualization
uses multiple secondary data sources, each secondary join
key may match any subset of the primary key. The primary
mediator handles duplicating each secondary result set as
needed to join with the mediated result set.

Finally, a secondary dimension which is not part of the
join key (and thus not a grouping field in the secondary
query) can still be used in the visualization. If it is function-
ally dependent on the join key, a secondary dimension can be
used without affecting the result set cardinality. Tableau ref-
erences this kind of non-grouping dimension using both MIN
and MAX aggregations in the query issued to the secondary
data source, which allows Tableau to determine if the di-
mension is functionally dependent on the join key. For each

row in the secondary result set, if the two aggregated values
are the same then the value is used as-is, reflecting the func-
tional dependence on the grouping fields. If the aggregated
values differ, Tableau represents the value using a special
form of NULL called ManyValues. This is represented in
the visualization as a ‘*’, but retains the behavior of NULL
when used in calculated fields or other computations. The
visual feedback allows a user to distinguish this lack of data
from the NULLs which occur due to missing or mismatched
data.

4.4 Inferring Join Keys
Tableau uses very simple rules for automatically detect-

ing candidate join keys: 1) the secondary data source field
name must match a field with the same name in the pri-
mary data source, 2) the data types must match 3) if they
are date/time fields, they must represent the same granu-
larity date bin in the date/time hierarchy, e.g. both are
MONTH. A user can intervene to force a match either by
providing field captions to rename fields within the Tableau
data model, or by explicitly defining a link between fields
using a simple user interface.

4.5 Simple Blending Example
A Tableau data blending scenario is shown in Figure 9,

which includes multiple views that were composed in min-
utes by uniquely mashing up four different airline datasets,
the largest of which include a 324 million row ticket pric-
ing database and a 140 million row on-time performance
database. A user starts by dragging fields from any dataset
on to a blank visual canvas, iteratively building a VizQL
statement which ultimately produces a visualization. In this
example, the user first drags the VizQL fields, YEAR(Flight
Date) and AVG(Airfare), from the pricing dataset onto the
visual canvas.

Data blending occurs when the user adds fields from a
separate dataset to an existing VizQL statement in order
to augment their analysis. Tableau assigns the existing



dataset to the primary mediator and uses secondary me-
diators to manage each subsequent dataset added to the
VizQL. The mediated schema has a primary key composed
of the grouping VizQL fields from the primary dataset (e.g.
YEAR(Flight Date)); the remaining fields in the mediated
schema are the aggregated VizQL fields from the primary
dataset along with the VizQL fields from each secondary
dataset. Continuing our example, the user wishes to drag
AVG(Total Cost per Gallon) from the fuel cost dataset to
the visualization. The schema matching algorithm examines
the secondary dataset for one or more fields whose name ex-
actly matches a field in the primary key of the mediated
schema. While the proposed matches are often sufficient
and acceptable, the user can specify an override. Since the
fuel cost dataset has a field named Date, the user provides a
caption of Flight Date to resolve the schema discrepancy.

At this point the mediated schema is created and the
VizQL workload is then federated to the wrappers for each
dataset. Each wrapper compiles VizQL to SQL or MDX for
the given workload, executes the query, and maps the result
set into the intermediate form expected by the primary me-
diator. The mapping is performed dynamically, since both
the VizQL and the data model evolve during a user’s it-
erative analytical workflow. Finally, the primary mediator
performs a left-join of each secondary result set along the
primary key of the mediated schema. In this example, the
mediated result set is rendered to produce the visualization
shown in Figure 9(a).

4.6 Evolved Blending Example
Figure 9(b) shows further evolution of the analysis of air-

line datasets, and demonstrates several key points of data
blending. First, the user adds a unique ID field named
uniquecarrier from the primary dataset to the VizQL to
visualize results for each airline ID over time. The medi-
ated schema adapts by adding this field to its primary key,
and the secondary mediator automatically queries the fuel
cost dataset at this finer granularity since it too has a field
named uniquecarrier. Next, the user decorates the visu-
alization with descriptive airline names for each airline ID
by dragging a field named Carrier Name from a lookup ta-
ble. This dataset is at a coarser granularity than the ex-
isting mediated schema, since it does not represent changes
to the carrier name over time. Our system automatically
handles this challenge by allowing the left-join to use a sub-
set of the mediated result set primary key, and replicating
the carrier name across the mediated result set. Figure 10
demonstrates this effect using a tabular view of a portion of
the mediated result set, along with portions of the primary
and secondary result sets. The figure also demonstrates how
the left-join preserves data for years which have no fuel cost
records. Last, the user adds average airline delays from a
140 million row dataset which matches on Flight Date and
uniquecarrier. This is a fast operation, since the wrapper
performs mapping operations on the relatively small, aggre-
gated result set produced by the remote database. Note that
none of these additional analytical tasks required the user
to intervene in data integration tasks, allowing their focus
to remain on finding insight in the data.

4.7 Filtering
Tableau provides several options for filtering data. Data

may be filtered based on aggregate conditions, such as ex-

cluding airlines having a low total count of flights. A user
can filter aggregate data from the primary and secondary
data sources in this fashion, which results in rows being
removed from the mediated result set. In contrast, row-
level filters are only allowed for the primary data source. To
improve performance of queries sent to the secondary data
sources, Tableau will filter the join keys to exclude values
which are not present in the domain of the primary data
source result set, since these values would be discarded by
the left-join.

4.8 Data Cleaning Capabilities
As mentioned in Section 4.4, Tableau supports user in-

tervention in resolving field names when schema matching
fails. And once the schemas match and data is blended,
the visualization can help provide feedback regarding the
validity of the underlying data values and domains. If there
are any data inconsistencies, users can provide aliases for a
field’s data values which will override the original values in
any query results involving that field. The primary media-
tor performs a left-join using the aliases of the data values,
allowing users to blend data despite discrepancies from data
entry errors and spelling variations. Tableau provides a sim-
ple user interface for editing field aliases.

Calculated fields are another aspect of Tableau’s data
model which support data cleaning. Calculated fields sup-
port arbitrary transformations of original data values into
new data values, such as trimming whitespace from a string
or constructing a date from an epoch-based integer times-
tamp. As with database fields, calculated fields can be used
as primary keys or join keys.

Last, Tableau allows users to organize a field’s related
data values into groups. These ad-hoc groups can be used
for entity resolution, such as binding multiple variations of
business names to a canonical form. Ad-hoc groups also al-
low constructing coarser-grained structures, such as group-
ing states into regions. Data blending supports joins be-
tween two ad-hoc groups, as well as joins between an ad-hoc
group and a string field.

5. RELATED WORK
For integrating and querying heterogeneous data, we dis-

cuss two primary differentiating axes: 1) how data is fetched
and 2) the level of detail at which the datasets are joined.
For the first axis, the data integration system either moves
the data into a local data store (referred to as a materialized
approach) or leaves the data at the sources, where data is
brought in on-demand from each source and combined on-
the-fly using a distributed query processing engine (referred
to as a virtual approach). For the second axis, data that is
joined at the row level and the result is aggregated is called
a pre-aggregation join and data that is first aggregated for
each data source and then joined is a post-aggregation join.

Unlike prior work in the context of integrating hetero-
geneous data for visual analysis [4, 5, 6, 9], Tableau em-
ploys a virtual, post-aggregation approach. The virtual ap-
proach is well-suited to interactivity, as it allows the user to
quickly start asking questions of their data, and leverages
the power of the source databases by pushing the compu-
tations to them. With the materialized approach, however,
the user pays the cost up front of moving the data to a local
repository – this approach is not as amenable to exploratory
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Figure 10: Sample Data Tables for Airline Blending Example

analysis where the user may not know in advance what data
will be of interest initially.

While our architecture resembles a typical mediator-
based, pay-as-you-go integration system [3, 4, 5, 7, 2], the
primary difference is that the mediated schema and map-
pings are created on-the-fly for each VizQL query workload.
Additionally, current systems either 1) place the burden on
the user to orchestrate some or all data integration tasks in
advance or 2) try to automate the integration, but create the
mediated schemas and semantic mappings before the end-
user issues her queries. In either case, the system does not
leverage the context of the workload queries to guide the in-
tegration effort or constrain the space of possible matches.

6. FUTURE WORK
The simplicity of the blending feature creates some arti-

ficial restrictions on how data is combined. For example,
the system requires that the join key be an exact match on
fields from the primary and secondary datasets. As a re-
sult, the visualization is forced to proceed at the granularity
dictated by the join key. As a simple example, let’s say a
user has a primary dataset containing per employee salary
information and a secondary dataset containing organiza-
tion information about employees and the team they belong
to for a given company. Furthermore, the users wants to
visualize the average salary per team, which means that the
visualization needs to be at the granularity of “team”. Cur-
rently, the blending system would detect that the common
field to blend on is “employee” and not “team”. One solution
is to give the user control over how to join their datasets by

explicitly specifying the join key. Another solution is to au-
tomatically infer the appropriate join key from the desired
visualization granularity by leveraging functional dependen-
cies. In the case that there are multiple join key candidates
that are functionally dependent, one performance optimiza-
tion strategy could be to pick the candidate that is at the
coarsest granularity.

Additionally, the blending system currently only supports
left-join operations. A few extensions that our customers
have suggested include supporting other types of operators
such as inner joins and unions. Furthermore, customers
have expressed interest in being able to filter their primary
data sources based on a filter condition on the secondary
data source. This feature would result in less data being
moved. Finally, we would like to improve our schema match-
ing heuristic by additionally considering the domains of the
attributes, since the current matching scheme is quite re-
strictive (i.e. only matching on attribute names and types).

7. CONCLUSION
Data blending is a new feature in Tableau that simplifies

the process of integrating data from a variety of heteroge-
neous sources. We presented several compelling customer
applications that leverage the feature and highlight its use-
fulness for interactive visual analysis. Additionally, we are
engaging with our customers to improve the flexibility and
capabilities of the feature. Ultimately, our goal is to make it
easier for users to discover and combine data that will help
them in their exploratory analysis.
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